Quasilinear elliptic problems with a singular gradient term

J. Carmona*

We consider the boundary value problem

$$
\begin{cases}-\operatorname{div}(M(x) \nabla u)=\lambda u+m(x) \frac{|\nabla u|^{q}}{|u|^{q-1}}+f(x) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

in a bounded domain $\Omega \subset \mathbb{R}^{N}$. Here M denotes an elliptic bounded matrix, $m \in L^{\infty}(\Omega), 1<q<2$ and the datum $f \in L^{p}(\Omega)$ for some $p>\frac{N}{2}$ is nontrivial and may change sign. We prove existence of solution for every $\lambda<\lambda^{*}$, the principal eigenvalue for the following problem

$$
\begin{cases}-\operatorname{div}(M(x) \nabla u)=\lambda u+m(x) \frac{|\nabla u|^{q}}{u^{q-1}}, & \text { in } \Omega \\ u>0, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

References

[1] J. Carmona, S. López-Martínez and P. J. Martínez-Aparicio, Existence and homogenization of singular quasilinear elliptic problems with sign-changing data. Preprint.
[2] J. Carmona, T. Leonori, S. López-Martínez and P. J. Martínez-Aparicio, Quasilinear elliptic problems with singular and homogeneous lower order terms. Submitted
[3] D. Arcoya and L. Moreno-Mérida, The effect of a singular term in a quadratic quasi-linear problem. J. Fixed Point Theory Appl. 19 (2017), 815-831.

[^0]
[^0]: *Departamento de Matemáticas, Universidad de Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 - Almería, Spain. Email: jcarmona@ual.es

